Published in

American Society for Microbiology, Journal of Bacteriology, 14(185), p. 4226-4232, 2003

DOI: 10.1128/jb.185.14.4226-4232.2003

Links

Tools

Export citation

Search in Google Scholar

A Bacterial TrwC Relaxase Domain Contains a Thermally Stable α-Helical Core

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

The TrwC protein is the relaxase-helicase responsible for the initiation and termination reactions of DNA processing during plasmid R388 conjugation. The TrwC-N275 fragment comprises the 275-amino-acid N-terminal domain of the protein that contains the DNA cleavage and strand transfer activities (the relaxase domain). It can be easily purified by keeping a cell lysate at 90 degrees C for 10 min. Infrared spectroscopy shows that this domain has a predominantly alpha/beta structure with some amount of unordered structure. Fast heating and cooling does not change the secondary structure, whereas slow heating produces two bands in the infrared spectrum characteristic of protein aggregation. The denaturation temperature is increased in the protein after the fast-heating thermal shock. Two-dimensional infrared correlation spectroscopy shows that thermal unfolding is a very cooperative two-state process without any appreciable steps prior to aggregation. After aggregation, the alpha-helix percentage is not altered and alpha-helix signal does not show in the correlation maps, meaning that the helices are not affected by heating. The results indicate that the domain has an alpha-helix core resistant to temperature and responsible for folding after fast heating and an outer layer of beta-sheet and unordered structure that aggregates under slow heating. The combination of a compact core and a flexible outer layer could be related to the structural requirements of DNA-protein binding.