Published in

Cambridge University Press, British Journal of Nutrition, 10(116), p. 1709-1719

DOI: 10.1017/s0007114516003706

Links

Tools

Export citation

Search in Google Scholar

Food composition tables in resource-poor settings: exploring current limitations and opportunities, with a focus on animal-source foods in sub-Saharan Africa

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

AbstractAnimal-source foods (ASF) have the potential to enhance the nutritional adequacy of cereal-based diets in low- and middle-income countries, through the provision of high-quality protein and bioavailable micronutrients. The development of guidelines for including ASF in local diets requires an understanding of the nutrient content of available resources. This article reviews food composition tables (FCT) used in sub-Saharan Africa, examining the spectrum of ASF reported and exploring data sources for each reference. Compositional data are shown to be derived from a small number of existing data sets from analyses conducted largely in high-income nations, often many decades previously. There are limitations in using such values, which represent the products of intensively raised animals of commercial breeds, as a reference in resource-poor settings where indigenous breed livestock are commonly reared in low-input production systems, on mineral-deficient soils and not receiving nutritionally balanced feed. The FCT examined also revealed a lack of data on the full spectrum of ASF, including offal and wild foods, which correspond to local food preferences and represent valuable dietary resources in food-deficient settings. Using poultry products as an example, comparisons are made between compositional data from three high-income nations, and potential implications of differences in the published values for micronutrients of public health significance, including Fe, folate and vitamin A, are discussed. It is important that those working on nutritional interventions and on developing dietary recommendations for resource-poor settings understand the limitations of current food composition data and that opportunities to improve existing resources are more actively explored and supported.