Published in

Elsevier, Geochimica et Cosmochimica Acta, (200), p. 25-41, 2017

DOI: 10.1016/j.gca.2016.12.011

Links

Tools

Export citation

Search in Google Scholar

Maghemite soil nodules reveal the impact of fire on mineralogical and geochemical differentiation at the Earth's surface

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Fires occur frequently over large parts of the Earth’s surface. They potentially exert a significant influence on the mineralogical and geochemical characteristics of an environment that is otherwise considered to be dominated by low temperature processes. We test this hypothesis by comparing the mineralogy and geochemistry of (i) magnetic, iron-rich soil nodules, (ii) non-magnetic iron soil nodules and (iii) a published dataset of surficial sediments from eastern Australia. Maghemite-rich nodules are present in soils from around the world. It has been argued that they are thermal alteration products of non-magnetic precursors, but this remains controversial. We use detailed petrographic and mineralogical analyses to demonstrate that maghemite occurs as part of a high temperature mineral assemblage including hematite and χ-alumina, within a magnetic nodule microfabric indicative of fire-induced dehydroxylation and sintering of non-magnetic precursors at temperatures of up to 600 °C. The genetic link between magnetic and non-magnetic nodules means that their comparison offers insights into the geochemical impact of fire. Our results show that magnetic nodules are depleted in Si, Y, Zr and HREE but enriched in Fe and Cr relative to non-magnetic nodules that occur in close spatial proximity. Magnetic nodules also show variable but distinctly low Y/Ho (21.4 ± 0.4) and Zr/Hf (29.3 ± 0.8) as well as anomalously low La relative to the other LREE. In situ laser ablation analyses show that this is largely due to the presence of χ-alumina that is depleted in HREEs and has extremely low Y/Ho (mainly