Published in

Elsevier, Applied Acoustics, (119), p. 146-155, 2017

DOI: 10.1016/j.apacoust.2017.01.002

Links

Tools

Export citation

Search in Google Scholar

Experimental investigation into vibro-acoustic emission signal processing techniques to quantify leak flow rate in plastic water distribution pipes

Journal article published in 2017 by J. D. Butterfield, A. Krynkin, R. P. Collins, S. B. M. Beck
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Leakage from water distribution pipes is a problem worldwide, and are commonly detected using the Vibro-Acoustic Emission (VAE) produced by the leak. The ability to quantify leak flow rate using VAE would have economic and operational benefits. However the complex interaction between variables and the leak’s VAE signal make classification of leak flow rate difficult and therefore there has been a lack of research in this area. The aim of this study is to use VAE monitoring to investigate signal processing techniques that quantify leak flow rate. A number of alternative signal processing techniques are deployed and evaluated, including VAE counts, signal Root Mean Square (RMS), peak in magnitude of the power spectral density and octave banding. A strong correlation between the leak flow rate and signal RMS was found which allowed for the development of a flow prediction model. The flow prediction model was also applied to two other media types representing buried water pipes and it was found that the surrounding media had a strong influence on the VAE signal which reduced the accuracy of flow classification. A further model was developed for buried pipes, and was found to yield good leak flow quantification using VAE. This paper therefore presents a useful method for water companies to prioritise maintenance and repair of leaks on water distribution pipes.