Published in

Nature Research, Scientific Reports, 1(6), 2016

DOI: 10.1038/srep38129

Links

Tools

Export citation

Search in Google Scholar

13-Methylberberine, a berberine analogue with stronger anti-adipogenic effects on mouse 3T3-L1 cells

Journal article published in 2016 by Yit-Lai Chow, Mami Sogame, Fumihiko Sato ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractLipid metabolism modulation is a main focus of metabolic syndrome research, an area in which many natural and synthetic chemicals are constantly being screened for in vitro and in vivo activity. Berberine, a benzylisoquinoline plant alkaloid, has been extensively investigated for its anti-obesity effects and as a potential cholesterol and triglyceride-lowering drug. We screened 11 protoberberine and 2 benzophenanthridine alkaloids for their anti-adipogenic effects on 3T3-L1 adipocytes and found that 13-methylberberine exhibited the most potent activity. 13-Methylberberine down-regulated the expression of the main adipocyte differentiation transcription factors, peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT enhancer binding protein alpha (C/EBPα), as well as their target genes. PPARγ, C/EBPα, and sterol regulatory element binding protein 1 (SREBP-1) protein levels were reduced, and this lipid-reducing effect was attenuated by an AMP-activated protein kinase (AMPK) inhibitor, indicating that the effect of this compound requires the AMPK signaling pathway. Decreased Akt phosphorylation suggested reduced de novo lipid synthesis. C-13 methyl substitution of berberine increased its accumulation in treated cells, suggesting that 13-methylberberine has improved absorption and higher accumulation compared to berberine. Our findings suggest that 13-methylberberine has potential as an anti-obesity drug.