Published in

Springer, European Spine Journal, 2(20), p. 297-307, 2010

DOI: 10.1007/s00586-010-1620-6

Links

Tools

Export citation

Search in Google Scholar

The effect of design parameters of dynamic pedicle screw systems on kinematics and load bearing: an in vitro study

Journal article published in 2010 by C. Schilling, S. Krüger, T. M. Grupp, G. N. Duda, W. Blömer, A. Rohlmann ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

As an alternative treatment for chronic back pain due to disc degeneration motion preserving techniques such as posterior dynamic stabilization (PDS) has been clinically introduced, with the intention to alter the load transfer and the kinematics at the affected level to delay degeneration. However, up to the present, it remains unclear when a PDS is clinically indicated and how the ideal PDS mechanism should be designed to achieve this goal. Therefore, the objective of this study was to compare different PDS devices against rigid fixation to investigate the biomechanical impact of PDS design on stabilization and load transfer in the treated and adjacent cranial segment. Six human lumbar spine specimens (L3–L5) were tested in a spine loading apparatus. In vitro flexibility testing was performed by applying pure bending moments of 7.5 Nm without and with additional preload of 400 N in the three principal motion planes. Four PDS devices, “DYN” (Dynesys®, Zimmer GmbH, Switzerland), “DSS™” (Paradigm Spine, Wurmlingen, Germany), and two prototypes of dynamic rods, “LSC” with a leaf spring, and “STC” with a spring tube (Aesculap AG, Tuttlingen, Germany), were tested in comparison to a rigid fixation device S4 (Aesculap AG, Tuttlingen, Germany) “RIG”, to the native situation “NAT” and to a defect situation “DEF” of the specimens. The instrumented level was L4–L5. The tested PDS devices comprising a stiffness range for axial stiffness of 10 N/mm to 230 N/mm and for bending stiffness of 3 N/mm to 15 N/mm. Range of motion (ROM), neutral zone (NZ), and intradiscal pressure (IDP) were analyzed for all instrumentation steps and load cases of the instrumented and non-instrumented level. In flexion, extension, and lateral bending, all systems, except STC, showed a significant reduction of ROM and NZ compared to the native situation (p 0.1). In axial rotation, only DSS and STC reduced the ROM significantly (p 0.05). A correlation was found between axial stiffness and intersegmental stabilization in the sagittal and frontal plane, but not in the transversal plane where intersegmental stabilization is mainly governed by the systems’ ability to withstand shear loads. Furthermore, we observed the systems’ capacity to reduce IDP in the treated segment. The adjacent segment does not seem to be affected by the stiffness of the fixation device under the described loading conditions.