Dissemin is shutting down on January 1st, 2025

Published in

De Gruyter Open, Studies in Logic, Grammar and Rhetoric, 1(47), p. 33-46, 2016

DOI: 10.1515/slgr-2016-0045

Links

Tools

Export citation

Search in Google Scholar

Application of Artificial Neural Networks and Principal Component Analysis to Predict Results of Infertility Treatment Using the IVF Method

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract There are high hopes for using the artificial neural networks (ANN) technique to predict results of infertility treatment using the in vitro fertilization (IVF) method. Some reports show superiority of the ANN approach over conventional methods. However, fully satisfactory results have not yet been achieved. Hence, there is a need to continue searching for new data describing the treatment process, as well as for new methods of extracting information from these data. There are also some reports that the use of principal component analysis (PCA) before the process of training the neural network can further improve the efficiency of generated models. The aim of the study herein presented was to verify the thesis that the use of PCA increases the effectiveness of the prediction by ANN for the analysis of results of IVF treatment. Results for the PCA-ANN approach proved to be slightly better than the ANN approach, however the obtained differences were not statistically significant.