Published in

Elsevier, Colloids and Surfaces A: Physicochemical and Engineering Aspects, (514), p. 32-37, 2017

DOI: 10.1016/j.colsurfa.2016.11.044

Links

Tools

Export citation

Search in Google Scholar

Stabilization of aqueous dispersions of poly(methacrylic acid)-coated iron oxide nanoparticles by double hydrophilic block polyelectrolyte poly(ethylene oxide)- block -poly( N -methyl-2-vinylpyridinium iodide)

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Aqueous dispersions of poly(methacrylic acid)-coated superparamagnetic iron oxide nanoparticles (PMAA@SPIONs) and nanoparticles obtained by adding a layer of double-hydrophilic cationic block polyelectrolyte poly(ethylene oxide)-block-poly(N-methyl-2-vinylpyridinium iodide) (PEO-QP2VP) on PMAA@SPIONs were studied by a combination of static and dynamic light scattering, SAXS, transmission electron microscopy and atomic force microscopy, probing the structure of the SPION aggregates on the lengthscale from 1 to 10$^3$ nm. Both SALS and AFM results indicate that adding a PEO-QP2VP layer to PMAA@SPIONs decreases the size of SPION aggregates formed in the dispersions. While TEM micrographs show that PEO-QP2VP@PMAA@SPION particles are less apt to form small clusters with the size of several tens nm compared to PMAA@SPION particles, the local clustering has no effect on the power law scattering behavior (I(q) ∼ q$^{−1.4}$) of the SPION dispersions at longer lengthscales (tens to hundreds nm), which reflects mainly polydispersity of the aggregates.