Published in

American Geophysical Union, Journal of Geophysical Research, B9(111), 2006

DOI: 10.1029/2005jb003981

American Geophysical Union, Journal of Geophysical Research, B12(111), p. n/a-n/a

DOI: 10.1029/2006jb004769

Links

Tools

Export citation

Search in Google Scholar

Correction to “Evidence for asymmetric nonvolcanic rifting and slow incipient oceanic accretion from seismic reflection data on the Newfoundland margin”

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 111 (2006): B09402, doi:10.1029/2005JB003981. ; Prestack depth migrations of seismic reflection data collected around the Ocean Drilling Program (ODP) Leg 210 transect on the Newfoundland nonvolcanic margin delineate three domains: (1) extended continental crust, (2) transitional basement, and (3) apparent slow spreading oceanic basement beyond anomaly M3 and indicate first-order differences between this margin and its well-studied conjugate, the Iberia margin. Extended continental crust thins abruptly with few observed faults, in stark contrast with the system of seaward dipping normal faults and detachments imaged within continental crust off Iberia. Transition zone basement typically appears featureless in seismic reflection profiles, but where its character can be discerned, it does not resemble most images of exhumed peridotite off Iberia. Seismic observations allow three explanations for transitional basement: (1) slow spreading oceanic basement produced by unstable early seafloor spreading, (2) exhumed, serpentinized mantle with different properties from that off Iberia, and (3) thinned continental crust, likely emplaced by one or more detachment or rolling-hinge faults. Although we cannot definitively discriminate between these possibilities, seismic reflection profiles together with coincident wide-angle seismic refraction data tentatively suggest that the majority of transitional basement is thinned continental crust emplaced during the late stages of rifting. Finally, seismic profiles image abundant faults and significant basement topography in apparent oceanic basement. These observations, together with magnetic anomaly interpretations and the recovery of mantle peridotites at ODP Site 1277, appear to be best explained by the interplay of extension and magmatism during the transition from nonvolcanic rifting to a slow spreading oceanic accretion system. ; The SCREECH program was funded by U.S. National Science Foundation grant OCE-9819053 to Woods Hole Oceanographic Institution, by the Danish Research Foundation (Danmarks Grundforskningsfond), and by the Natural Science and Engineering Council of Canada. D. Shillington was also supported by NSF grant OCE-0241940 and by the University of Wyoming Graduate School. B. Tucholke acknowledges additional support from NSF grant OCE-0326714 and the Henry Bryant Bigelow Chair in Oceanography at Woods Hole Oceanographic Institution.