Published in

Society of Photo-optical Instrumentation Engineers, Proceedings of SPIE, 2016

DOI: 10.1117/12.2231846

Links

Tools

Export citation

Search in Google Scholar

Atmospheric phase characteristics of the ALMA long baseline

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

© 2016 SPIE.Atacama Large Millimeter/submillimeter Arraj (ALMA) is the world's largest millimeter / submilliineter (mm / submm) interferometer. Along with science observations, ALMA has performed several long baseline campaigns in the last ft years to characterize and optimize its long baseline capabilities, lo achieve full long baseline capability of ALMA, it is important to understand the characteristics of atmospheric phase fluctuation at long baselines, since it is believed to be the main cause of miii/siibiiiui image degradation. For the first time, we present detailed properties of atmospheric phase fluctuation at miii/subiiiiii wavelength from baselines up to 15 km in length. Atmospheric phase fluctuation increases as a function of baseline length with a power-law slope close to 0.6, and many of the data display a shallower slope (0.2 - 0.3) at baseline length greater than about 1 km. Some of the data, on the other hand, show a single slope up to the maximum baseline length of around 15 km. l he phase correction method based on water vapor radiometers (WV Rs) works well, especially for cases with preci pi table water vapor (PWV) greater than 1 mm. typicalh yielding a 50% decrease or more in the degree of phase fluctuation. However, significant amount of atmospheric phase fluctuation still remains after the WVH phase correction; about 200 micron in rnis excess path length (rms phase fluctuation iu unit of length) even at PWV less than 1 nun. This result suggests the existence of other non-water-vapor sources of phase fluctuation, and emphasizes the need for additional phase correction methods, such as band-To-band and/or fast switching.