Dissemin is shutting down on January 1st, 2025

Published in

SAGE Publications, Journal of Cerebral Blood Flow and Metabolism, 9(33), p. 1465-1473, 2013

DOI: 10.1038/jcbfm.2013.103

Links

Tools

Export citation

Search in Google Scholar

The effect of cell size and channel density on neuronal information encoding and energy efficiency

Journal article published in 2013 by Biswa Sengupta, Ahmed Aldo Faisal ORCID, Simon B. Laughlin, Jeremy E. Niven
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Identifying the determinants of neuronal energy consumption and their relationship to information coding is critical to understanding neuronal function and evolution. Three of the main determinants are cell size, ion channel density, and stimulus statistics. Here we investigate their impact on neuronal energy consumption and information coding by comparing single-compartment spiking neuron models of different sizes with different densities of stochastic voltage-gated Na(+) and K(+) channels and different statistics of synaptic inputs. The largest compartments have the highest information rates but the lowest energy efficiency for a given voltage-gated ion channel density, and the highest signaling efficiency (bits spike(-1)) for a given firing rate. For a given cell size, our models revealed that the ion channel density that maximizes energy efficiency is lower than that maximizing information rate. Low rates of small synaptic inputs improve energy efficiency but the highest information rates occur with higher rates and larger inputs. These relationships produce a Law of Diminishing Returns that penalizes costly excess information coding capacity, promoting the reduction of cell size, channel density, and input stimuli to the minimum possible, suggesting that the trade-off between energy and information has influenced all aspects of neuronal anatomy and physiology.Journal of Cerebral Blood Flow & Metabolism advance online publication, 19 June 2013; doi:10.1038/jcbfm.2013.103.