16 páginas, 8 figuras, 2 tablas.-- This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms ; Three different immunoglobulin (Ig) isotypes can be found in teleost fish, IgM, IgD, and the teleost-specific IgT. IgM is considered to have a systemic activity, and IgT is attributed a mucosal role, similar to mammalian IgA. In this study, the complete sequence of gilthead sea bream IgM and IgT in their membrane (m) and soluble (s) forms are described for the first time in a perciform fish. Their constitutive gene expression is analyzed in different tissues, and their regulation upon viral, bacterial, parasitic, mucosal vaccination and dietary challenges are studied. GCB IgM and IgT have the prototypical structure when compared to other fish Igs. The constitutive expression of sIgM was the highest overall in all tissues, whereas mIgT expression was highest in mucosal tissues, such as gills and intestine. IgM and IgT were differentially regulated upon infection. IgT was highly upregulated locally upon infection with the intestinal parasite Enteromyxum leei or systemically after Nodavirus infection. Long-term intestinal parasitic infections increased the serum titer of both isotypes. Mucosal vaccination against Photobacterium damselae subsp. piscicida finely regulated the Ig response inducing a systemic increase of IgM titers in serum and a local IgT response in skin mucus when animals were exposed to the pathogen by bath challenge. Interestingly, plant-based diets inhibit IgT upregulation upon intestinal parasitic challenge, which was related to a worse disease outcome. All these results corroborate the mucosal role of IgT and emphasize the importance of a finely tuned regulation of Ig isotypes upon infection, which could be of special interest in vaccination studies ; This work has been carried out with financial support from by the Spanish MINECO under projects AGL2013-48560-R to JP-S and AS-B and AGL2014-51773-C3-3-R to EG-C. Additional funding was provided by the European Union, through the Horizon 2020 research and innovation program under grant agreement 634429 (ParaFishControl) and through the 7th Framework Programme for Research and Technological Development (FP7) under grant 311993 (TARGETFISH). Additional support was provided by Generalitat Valenciana (PROMETEOII/2014/085). MCP was supported by the Spanish grant Formación Postdoctoral 2013 (FPDI-2013-15741) ; Peer reviewed