Published in

Elsevier, Estuarine, Coastal and Shelf Science

DOI: 10.1016/j.ecss.2016.02.004

Links

Tools

Export citation

Search in Google Scholar

Hydromorphic to subaqueous soils transitions in the central Grado lagoon (Northern Adriatic Sea, Italy)

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The Grado lagoon is among the largest in the Mediterranean sea and is characterized by salt marshes, where tides influenced the development of a complex micromorphology coupled to a micromosaic of vegetation covers. This study represents the first contribution to the understanding of the main processes governing formation, development and spatial transitions between hydromorphic and subaqueous soils in an Adriatic lagoon ecosystem. Physicochemical characteristics and development of soils were investigated in three salt marshes differing for their proximity to the open sea, textural composition and age of formation. Soils of back barrier salt marshes had A/C profiles and were mostly characterized by a sandy coarse texture that allows rapid drainage and subsurface oxygen exchanges. Soil sequences from the inner salt marsh to its submerged border slope or to a brackish waterhole do not simply represent a hydrosequence, but also reflect erosion/sorting/accumulation processes. The soils in the central part of the lagoon have finer texture and in displayed transition or cambic horizons. Silty clay loam textures and low positions allowed the development of more severe anoxic conditions and accumulation of sulphides. The tide oscillation strongly contributed to formation of redoximorphic features, intensity of anaerobic conditions but also colonization by different plant communities. Discriminant analysis was performed to identify physicochemical properties which discriminate the different soils according to geo-morphological position and prevailing plants. It confirmed that differentiation of plant communities occurred according to distinct morphological and physicochemical soil properties, but also acted as a primary affecting factor of pedogenesis.