Dissemin is shutting down on January 1st, 2025

Published in

American Association for the Advancement of Science, Science Advances, 12(2), 2016

DOI: 10.1126/sciadv.1501938

Links

Tools

Export citation

Search in Google Scholar

Long photoperiods sustain high pH in Arctic kelp forests

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Concern on the impacts of ocean acidification on calcifiers, such as bivalves, sea urchins, and foraminifers, has led to efforts to understand the controls on pH in their habitats, which include kelp forests and seagrass meadows. The metabolism of these habitats can lead to diel fluctuation in pH with increases during the day and declines at night, suggesting no net effect on pH at time scales longer than daily. We examined the capacity of subarctic and Arctic kelps to up-regulate pH in situ and experimentally tested the role of photoperiod in determining the capacity of Arctic macrophytes to up-regulate pH. Field observations at photoperiods of 15 and 24 hours in Greenland combined with experimental manipulations of photoperiod show that photoperiods longer than 21 hours, characteristic of Arctic summers, are conducive to sustained up-regulation of pH by kelp photosynthesis. We report a gradual increase in pH of 0.15 units and a parallel decline in pCO2 of 100 parts per million over a 10-day period in an Arctic kelp forest over midsummer, with ample scope for continued pH increase during the months of continuous daylight. Experimental increase in CO2 concentration further stimulated the capacity of macrophytes to deplete CO2 and increase pH. We conclude that long photoperiods in Arctic summers support sustained up-regulation of pH in kelp forests, with potential benefits for calcifiers, and propose that this mechanism may increase with the projected expansion of Arctic vegetation in response to warming and loss of sea ice. ; The study was funded by the Danish Environmental Protection Agency within the Danish Cooperation for Environment in the Arctic. It is also a contribution to the Greenland Ecosystem Monitoring program (www.G-E-M.dk) and the Arctic Science Partnership (www.asp-net.org). M.S.-M. was supported by a Fundación “La Caixa” fellowship (Spain). We acknowledge support by the CSIC Open Access Publication Initiative through its Unit of Information Resources for Research (URICI). ; Peer reviewed