Published in

Universidad Nacional de Colombia, Revista Colombiana de Estadística, 1(40), p. 165-203, 2017

DOI: 10.15446/rce.v40n1.56153

Links

Tools

Export citation

Search in Google Scholar

Statistical properties and different methods of estimation of transmuted Rayleigh distribution

Journal article published in 2017 by Sanku Dey, Enayetur Raheem ORCID, Saikat Mukherjee
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

This article addresses the various properties and different methods of estimation of the unknown parameters of the Transmuted Rayleigh (TR) distribution from the frequentist point of view. Although, our main focus is on estimation from frequentist point of view, yet, various mathematical and statistical properties of the TR distribution (such as quantiles, moments, moment generating function, conditional moments, hazard rate, mean residual lifetime, mean past lifetime, mean deviation about mean and median, the stochastic ordering, various entropies, stress-strength parameter and order statistics) are derived. We briefly describe different frequentist methods of estimation approaches, namely, maximum likelihood estimators, moments estimators, L-moment estimators, percentile based estimators, least squares estimators, method of maximum product of spacings, method of Cramér-von-Mises, methods of Anderson-Darling and right-tail Anderson-Darling and compare them using extensive numerical simulations. Monte Carlo simulations are performed to compare the performances of the proposed methods of estimation for both small and large samples. Finally, the potentiality of the model is analyzed by means of two real data sets which is further illustrated by obtaining bias and standard error of the estimates and the bootstrap percentile confidence intervals using bootstrap resampling.