Published in

Institute of Electrical and Electronics Engineers, IEEE Photonics Journal, p. 1-1, 2017

DOI: 10.1109/jphot.2016.2644962

Links

Tools

Export citation

Search in Google Scholar

1D silicon nitride grating refractive index sensor suitable for integration with CMOS detectors

Journal article published in 2017 by Abdul Shakoor ORCID, Marco Grande ORCID, James Grant, David R. S. Cumming
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The transformation of nanophotonic sensors from laboratory-based demonstrations to a portable system to ensure widespread applicability in everyday life requires their integration with detectors for direct electrical read out. As complementary metal oxide semiconductor (CMOS) technology has revolutionized the electronics industry, the integration of nanophotonic structures with CMOS technology will also transform the sensing market. However, nanophotonic sensors have to fulfill certain requirements for their integration with CMOS detectors, such as operation in the visible wavelength range, operation in normal incidence configuration, use of CMOS compatible materials, and capability to give large optical intensity change due to resonance wavelength shift. In this paper, we have designed and developed one-dimensional silicon nitride grating structures that satisfy all these conditions simultaneously. The gratings can achieve 1 and 6 nm linewidths for the transverse-electric (TE) and transverse-magnetic (TM) polarizations, respectively, with 90% resonance depth. The experimental linewidth is 8 nm with 55% resonance depth, which is limited by the detector resolution. The experimental sensitivity of the device is 160 nm/refractive index unit (RIU), which translates to a very high intensity sensitivity of 1700%/RIU, which would enable sensing of very small changes in refractive index when integrated with a detector.