Published in

American Chemical Society, Journal of Organic Chemistry, 4(82), p. 2123-2128, 2017

DOI: 10.1021/acs.joc.6b02944

Links

Tools

Export citation

Search in Google Scholar

Very Strong Binding for a Neutral Calix[4]pyrrole Receptor Displaying Positive Allosteric Binding

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The dual-analyte responsive behavior of tetraTTF-calix[4]pyrrole receptor 1 has shown to complex electron-deficient planar guests in a 2:1 fashion in the so-called 1,3-alternate conformation. However, stronger 1:1 complexes have been demonstrated with tetraalkylammonium halide salts that defer receptor 1 to its so-called cone conformation. Herein, we report the complexation of an electron-deficient planar guest, namely 1,4,5,8-naphthalene-tetracarboxylic dianhydride (NTCDA, 2), that champions the complexation with 1 resulting in a very high association constant Ka = 3 × 1010 M−2. The tetrathiafulvalene (TTF) subunits in the tetraTTF-calix[4]pyrrole receptor 1 present a nearly perfect shape and electronic complementarity to the NTCDA guest, which was confirmed by X-ray crystal structure analysis, DFT calculations, and electron density surface mapping. The complexation results in formation of a charge transfer complex (22⊆1), that is visualized as a color change from yellow to brown.