Published in

Institute of Electrical and Electronics Engineers, IEEE Transactions on Biomedical Circuits and Systems, 5(10), p. 955-962, 2016

DOI: 10.1109/tbcas.2016.2584239

Links

Tools

Export citation

Search in Google Scholar

In-Vivo Validation of Fully Implantable Multi-Panel Devices for Remote Monitoring of Metabolism

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This paper presents the in-vivo tests on a Fully Implantable Multi-Panel Devices for Remote Monitoring of endogenous and exogenous analytes. To investigate issues on biocompatibility, three different covers have been designed, realized and tested in mice for 30 days. ATP and neutrophil concentrations have been measured, at the implant site after the device was explanted, to assess the level of biocompatibility of the device. Finally, fully working prototypes of the device were implanted in mice and tested. The implanted devices were used to detect variations in the physiological concentrations of glucose and paracetamol. Data trends on these analytes have been successfully acquired and transmitted to the external base station. Glucose and paracetamol (also named acetaminophen) have been proposed in this research as model molecules for applications to personalized and translational medicine.