Links

Tools

Export citation

Search in Google Scholar

Microstructure and Texture Evolution in Primary Recrystallization of CGO Silicon Steel

Published in 2016 by Qiang Sun, Zhi chao Li, Zhen li Mi, Ning Dang
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

Primary recrystallization annealing was operated in 3%(mass fraction)Si CGO steels. Different annealing holding time was set up in experiments. Microstructure, dislocations and texture distribution were analysed by OM, TEM and EBSD techniques. Evolution of microstructure and texture in primary recrystallization was studied. Results indicate that as the annealing holding time prolongs, recovery and recrystallization occur gradually. When the holding time increases to 300s, recrystallization is almost fully realized and grains are equiaxed. With the extension of holding time, the dislocation density decreases. Primary recrystallization texture is affected by holding time. As the holding time extends, {111} texture and {110} texture are weakened and Goss texture is strengthened. {111} texture is reduced firstly and then increases. The intensity of cube texture and rotated cube texture is stable. When holding time is short, grains are dominated by small angle grain boundaries with the existence of a large amount of subgrains. As the holding time prolongs, large angle grain boundaries increase.