Published in

MDPI, Computers, 1(6), p. 3, 2017

DOI: 10.3390/computers6010003

Links

Tools

Export citation

Search in Google Scholar

Static Human Detection and Scenario Recognition via Wearable Thermal Sensing System

Journal article published in 2017 by Qingquan Sun, Ju Shen, Haiyan Qiao, Xinlin Huang, Chen Chen ORCID, Fei Hu
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Conventional wearable sensors are mainly used to detect the physiological and activity information of individuals who wear them, but fail to perceive the information of the surrounding environment. This paper presents a wearable thermal sensing system to detect and perceive the information of surrounding human subjects. The proposed system is developed based on a pyroelectric infrared sensor. Such a sensor system aims to provide surrounding information to blind people and people with weak visual capability to help them adapt to the environment and avoid collision. In order to achieve this goal, a low-cost, low-data-throughput binary sampling and analyzing scheme is proposed. We also developed a conditioning sensing circuit with a low-noise signal amplifier and programmable system on chip (PSoC) to adjust the amplification gain. Three statistical features in information space are extracted to recognize static humans and human scenarios in indoor environments. The results demonstrate that the proposed wearable thermal sensing system and binary statistical analysis method are efficient in static human detection and human scenario perception.