Published in

MDPI, Applied Sciences, 1(7), p. 85, 2017

DOI: 10.3390/app7010085

Links

Tools

Export citation

Search in Google Scholar

Enhanced Iron and Selenium Uptake in Plants by Volatile Emissions of Bacillus amyloliquefaciens (BF06)

Journal article published in 2017 by Jianfei Wang, Cheng Zhou, Xin Xiao, Yue Xie, Lin Zhu, Zhongyou Ma, Zhongyou
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Volatile organic compounds (VOCs) released by plant growth-promoting rhizobacteria (PGPR) are involved in promoting growth and triggering systemic resistance (ISR) in plants. Importantly, the release of VOCs by some PGPR strains confers improved plant uptake of nutrient elements from the soil. However, the underlying mechanisms of VOCs-regulated nutrient acquisition remain elusive. In this study, VOCs were extracted and identified from Bacillus amyloliquefaciens (strain BF06) using gas chromatography–mass spectrometry (GC–MS). BF06 VOCs exposure significantly promoted the growth and photosynthesis of Arabidopsis plants. To explore how microbial VOCs stimulate growth in plants, gene expression profiles of Arabidopsis seedlings exposed to BF06 VOCs were examined using transcriptomic analyses. In screening differentially expressed genes (DEGs), most upregulated DEGs were found to be related to amino acid transport, iron (Fe) uptake and homeostasis, and sulfate transport. Furthermore, BF06 VOCs significantly enhanced Fe absorption in plants under Fe-limited conditions. However, when nitric oxide (NO) synthesis was inhibited, BF06 VOCs exposure could not substantially augment Fe acquisition in plants under alkaline stress, indicating that VOCs-mediated plant uptake of Fe was required for induction of root NO accumulation. In addition, BF06 VOCs exposure led to a marked increase in some genes encoding for sulfate transporters, and further increased Se accumulation in plants. Intriguingly, BF06 VOCs exposure failed to increase Se uptake in sultr1;2 mutants, which may indicate that high-level transcription of these sulfate transporters induced by BF06 VOCs was essential for enhancing Se absorption by plants. Taken together, our results demonstrated the potential of VOCs released by this strain BF06 to increase Fe and Se uptake in plants.