Published in

Nature Research, Scientific Reports, 1(7), 2017

DOI: 10.1038/s41598-017-01503-y

Links

Tools

Export citation

Search in Google Scholar

Glassy nature of hierarchical organizations

Journal article published in 2017 by Maryam Zamani, Tamas Vicsek ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractThe question of why and how animal and human groups form temporarily stable hierarchical organizations has long been a great challenge from the point of quantitative interpretations. The prevailing observation/consensus is that a hierarchical social or technological structure is optimal considering a variety of aspects. Here we introduce a simple quantitative interpretation of this situation using a statistical mechanics-type approach. We look for the optimum of the efficiency function ${E}_{eff}=1/N{∑ }_{ij}{J}_{ij}{a}_{i}{a}_{j}$ E e f f = 1 / N ∑ i j J i j a i a j with J ij denoting the nature of the interaction between the units i and j and a i standing for the ability of member i to contribute to the efficiency of the system. Notably, this expression for E eff has a similar structure to that of the energy as defined for spin-glasses. Unconventionally, we assume that J ij -s can have the values 0 (no interaction), +1 and −1; furthermore, a direction is associated with each edge. The essential and novel feature of our approach is that instead of optimizing the state of the nodes of a pre-defined network, we search for extrema for given a i -s in the complex efficiency landscape by finding locally optimal network topologies for a given number of edges of the subgraphs considered.