Published in

Volume 3: Thermal-Hydraulics; Turbines, Generators, and Auxiliaries

DOI: 10.1115/icone20-power2012-54698

Links

Tools

Export citation

Search in Google Scholar

Methodology for the Analysis of Fuel Behavior During LOCA and RIA for Licensing Purposes

Proceedings article published in 2012 by Martina Adorni, Alessandro Del Nevo ORCID, Francesco D’Auria
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Licensing requirements vary by country in terms of their scope, range of applicability and numerical values and may imply the use of system thermal hydraulic computer codes. Depending on the specific event scenario and on the purpose of the analysis, it might be required the availability of calculation methods that are not implemented in the standard system thermal hydraulic codes, as for burst temperature, burst strain and flow blockage calculations. This may imply the use of a dedicated fuel rod thermo-mechanical computer code, which can be coupled with thermal-hydraulic system and neutron kinetic codes to be used for the safety analysis. This paper describes the development and the application of a methodology for the analysis of the Large Break Loss of Coolant Accident (LB-LOCA) scenario in Atucha-2 Nuclear Power Plant (NPP), focusing on the procedure adopted for the use of the fuel rod thermo-mechanical code and its application for the safety analysis (Chapter 15 Final Safety Analysis Report, FSAR). The methodology implies the application of best estimate thermal-hydraulic, neutron physics and fuel pin performance computer codes, with the objective to verify the compliance with the specific acceptance criteria. The fuel pin performance code is applied with the main objective to evaluate the extent of cladding failures during the transient. A strong effort has been performed in order to enhance the fuel behaviour code capabilities and to improve the reliability of the code results.