Published in

2016 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)

DOI: 10.1109/cibcb.2016.7758109

Links

Tools

Export citation

Search in Google Scholar

Parallel implementation of efficient search schemes for the inference of cancer progression models

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The emergence and development of cancer is a consequence of the accumulation over time of genomic mutations involving a specific set of genes, which provides the cancer clones with a functional selective advantage. In this work, we model the order of accumulation of such mutations during the progression, which eventually leads to the disease, by means of probabilistic graphic models, i.e., Bayesian Networks (BNs). We investigate how to perform the task of learning the structure of such BNs, according to experimental evidence, adopting a global optimization meta-heuristics. In particular, in this work we rely on Genetic Algorithms, and to strongly reduce the execution time of the inference - which can also involve multiple repetitions to collect statistically significant assessments of the data - we distribute the calculations using both multi-threading and a multi-node architecture. The results show that our approach is characterized by good accuracy and specificity; we also demonstrate its feasibility, thanks to a 84× reduction of the overall execution time with respect to a traditional sequential implementation.