Published in

American Association of Immunologists, The Journal of Immunology, 1(190), p. 381-391, 2013

DOI: 10.4049/jimmunol.1201330

Links

Tools

Export citation

Search in Google Scholar

Phosphoinositide 3-OH Kinase Regulates Integrin-Dependent Processes in Neutrophils by Signaling through Its Effector ARAP3

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract ARAP3, a GTPase activating protein for Rho and Arf family GTPases, is one of many phosphoinositide 3-OH kinase (PI3K) effectors. In this study, we investigate the regulatory input of PI3K upstream of ARAP3 by analyzing neutrophils from an ARAP3 pleckstrin homology (PH) domain point mutation knock-in mouse (R302, 303A), in which ARAP3 is uncoupled from activation by PI3K. ARAP3 PH domain point mutant neutrophils are characterized by disturbed responses linked to stimulation by either integrin ligands or immobilized immune complexes. These cells exhibit increased β2 integrin inside-out signaling (binding affinity and avidity), and our work suggests the disturbed responses to immobilized immune complexes are secondary to this. In vitro, neutrophil chemotaxis is affected in the mutant. In vivo, ARAP3 PH domain point mutant bone marrow chimeras exhibit reduced neutrophil recruitment to the peritoneum on induction of sterile peritonitis and also reduced inflammation in a model for rheumatoid arthritis. The current work suggests a dramatic regulatory input of PI3K into the regulation of β2 integrin activity, and processes dependent on this, by signaling through its effector ARAP3.