Published in

Nature Research, Scientific Reports, 1(6), 2016

DOI: 10.1038/srep38198

Links

Tools

Export citation

Search in Google Scholar

Improved bi-allelic modification of a transcriptionally silent locus in patient-derived iPSC by Cas9 nickase

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractHomology directed repair (HDR)-based genome editing via selectable long flanking arm donors can be hampered by local transgene silencing at transcriptionally silent loci. Here, we report efficient bi-allelic modification of a silent locus in patient-derived hiPSC by using Cas9 nickase and a silencing-resistant donor construct that contains an excisable selection/counter-selection cassette. To identify the most active single guide RNA (sgRNA)/nickase combinations, we employed a lentiviral vector-based reporter assay to determine the HDR efficiencies in cella. Next, we used the most efficient pair of sgRNAs for targeted integration of an improved, silencing-resistant plasmid donor harboring a piggyBac-flanked puroΔtk cassette. Moreover, we took advantage of a dual-fluorescence selection strategy for bi-allelic targeting and achieved 100% counter-selection efficiency after bi-allelic excision of the selection/counter-selection cassette. Together, we present an improved system for efficient bi-allelic modification of transcriptionally silent loci in human pluripotent stem cells.