Published in

Ferrata Storti Foundation, Haematologica, 4(102), p. 637-646

DOI: 10.3324/haematol.2016.143958

Links

Tools

Export citation

Search in Google Scholar

Dual role of IL-21 in megakaryopoiesis and platelet homeostasis

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Gene profiling studies have indicated that in vitro differentiated human megakaryocytes express the receptor for IL-21 (IL-21R), an immunostimulatory cytokine associated with inflammatory disorders and currently under evaluation in cancer therapy. The aim of this study was to investigate whether IL-21 modulates megakaryopoiesis. We first checked the expression of IL-21 receptor on human BM and in vitro differentiated megakaryocytes. Then, we investigated the effect of IL-21 on the in vitro differentiation of human blood CD34+ progenitors into megakaryocytes. Finally, we analyzed the consequences of hydrodynamic transfection-mediated transient expression of IL-21, on megakaryopoiesis and thrombopoiesis in mice. The IL-21Rα chain was expressed in human BM megakaryocytes and was progressively induced during in vitro differentiation of human peripheral CD34+ progenitors, while the signal transducing γ chain was down-regulated. Consistently, the STAT3 phosphorylation induced by IL-21 diminished during the later stages of megakaryocytic differentiation. In vitro, IL-21 increased the number of CFU-MKs generated from CD34+ cells and the number of megakaryocytes differentiated from CD34+ progenitors in a JAK3- and STAT3-dependent manner. Forced expression of IL-21 in mice increased the density of bi-potent MK progenitors and BM megakaryocytes, and the platelet generation, but increased platelet clearance and consequently resulting in reduced blood platelet counts. Our work suggests that IL-21 regulates megakaryocyte development and platelet homeostasis. Thus IL-21 may link immune responses to physiological or pathological platelet-dependent processes.