Links

Tools

Export citation

Search in Google Scholar

Excitation of magnon accumulation by laser clocking as a source of long-range spin waves in transparent magnetic films

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

Optical tools are of great promise for generation of spin waves due to the possibility to manipulate on ultrashort time scales and to provide local excitation. However, a single laser pulse can inject spin waves only with a broad frequency spectrum, resulting in a short propagation distance and low amplitude. Here we excite a magnetic garnet film by a train of fs-laser pulses with 1 GHz repetition rate so that pulse separation is smaller than decay time of the magnetic modes which allows to achieve collective photonic impact on magnetization. It establishes a quasi-stationary source of SWs, namely a coherent magnon accumulation ("magnon cloud"). This approach has several appealing features: (i) the source is tunable; (ii) the SW amplitude can be significantly enhanced; (iii) the spectrum of the generated SWs is quite narrow that provides longer propagation distance; (iv) the periodic pumping results in almost constant in time SW amplitude up to 100 um away from the source; and (v) the SW emission shows a pronounced directionality. These results expand the capabilities of ultrafast coherent optical control of magnetization and pave a way for applications in data processing, including the quantum regime. The quasi-stationary magnon accumulation might be also of interest for the problem of magnon Bose-Einstein condensate. ; Comment: 11 pages, 4 figures