Published in

IOP Publishing, 2D Materials, 2(4), p. 025016

DOI: 10.1088/2053-1583/aa58a0

Links

Tools

Export citation

Search in Google Scholar

Dark excitons and the elusive valley polarization in transition metal dichalcogenides

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A rate equation model for the dark and bright excitons kinetics is proposed which explains the wide variation in the observed degree of circular polarization of the PL emission in different TMDs monolayers. Our work suggests that the dark exciton states play an important, and previously unsuspected role in determining the degree of polarization of the PL emission. A dark exciton ground state provides a robust reservoir for valley polarization, which tries to maintain a Boltzmann distribution of the bright exciton states in the same valley via the intra valley bright dark exciton scattering mechanism. The dependence of the degree of circular polarization on the detuning energy of the excitation in MoSe$_2$ suggests that the electron-hole exchange interaction dominates over two LA phonon emission mechanism for inter valley scattering in TMDs. ; Comment: text without changes, the misspelling of one of the names corrected