Published in

The Royal Society, Biology Letters, 2(6), p. 274-277, 2009

DOI: 10.1098/rsbl.2009.0803

Links

Tools

Export citation

Search in Google Scholar

Intra-individual variation allows an explicit test of the hygric hypothesis for discontinuous gas exchange in insects

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The hygric hypothesis postulates that insect discontinuous gas exchange cycles (DGCs) are an adaptation that reduces respiratory water loss (RWL), but evidence is lacking for reduction of water loss by insects expressing DGCs under normal ecological conditions. Larvae of Erynnis propertius (Lepidoptera: Hesperiidae) naturally switch between DGCs and continuous gas exchange (CGE), allowing flow-through respirometry comparisons of water loss between the two modes. Water loss was lower during DGCs than CGE, both between individuals using different patterns and within individuals using both patterns. The hygric cost of gas exchange (water loss associated with carbon dioxide release) and the contribution of respiratory to total water loss were lower during DGCs. Metabolic rate did not differ between DGCs and CGE. Thus, DGCs reduce RWL in E. propertius, which is consistent with the suggestion that water loss reduction could account for the evolutionary origin and/or maintenance of DGCs in insects.