Published in

International Union of Crystallography, Acta Crystallographica Section F: Structural Biology and Crystallization Communications, 5(66), p. 549-553, 2010

DOI: 10.1107/s174430911001119x

Links

Tools

Export citation

Search in Google Scholar

A preliminary crystallographic study of recombinant NicX, an Fe<sup>2+</sup>-dependent 2,5-dihydroxypyridine dioxygenase fromPseudomonas putidaKT2440

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

NicX from Pseudomonas putida KT2440 is an Fe(2+)-dependent dioxygenase that is involved in the aerobic degradation of nicotinic acid. The enzyme converts 2,5-dihydroxypyridine to N-formylmaleamic acid when overexpressed in Escherichia coli. Biophysical characterization of NicX by analytical gel-filtration chromatography revealed that it behaves as an oligomeric assembly in solution, with an apparent molecular weight that is consistent with a hexameric species. NicX was crystallized by the hanging-drop vapour-diffusion method at 291 K. Diffraction data were collected to a resolution of 2.0 A at the ESRF. The crystals most probably belong to the orthorhombic space group C222 or C222(1). The estimated Matthews coefficient was 2.4 A(3) Da(-1), corresponding to 50% solvent content, which is consistent with the presence of three protein molecules in the asymmetric unit. Analysis of the crystal data together with chromatographic results supports NicX being a hexameric assembly composed of two cyclic trimers. Currently, crystallization of recombinant selenomethionine-containing NicX is in progress.