Published in

Taylor and Francis Group, Journal of Biomaterials Science, Polymer Edition, 14(22), p. 1947-1961

DOI: 10.1163/092050610x529173

Links

Tools

Export citation

Search in Google Scholar

Hydrogel nanocomposites: a potential UV/blue light filtering material for ophthalmic lenses

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Poly(2-hydroxyethyl methacrylate-co-methyl methacrylate) (poly(HEMA-co-MMA)) and ZnS hydrogel nanocomposites were prepared and characterized. The chemical composition of the inorganic nanoparticles was confirmed by X-ray diffraction, and the homogeneity of their distribution within the hydrogel was assessed by transmission electron microscopy. The influence of the content of ZnS nanoparticles on the optical performances of the nanocomposites was investigated by UV-Vis spectroscopy. The ability of the hydrogel nanocomposites to filter the hazardous UV light and part of the blue light was reported, which makes them valuable candidates for ophthalmic lens application. In contrast to the optical properties, the thermo-mechanical properties of neat poly(HEMA-co-MMA) hydrogels were found to be largely independent of filling by ZnS nanoparticles ( 2 mg/ml co-monomer mixture). Finally, in vitro cell adhesion test with lens epithelial cells (LECs), extracted from porcine lens crystalline capsule, showed that ZnS had no deleterious effect on the biocompatibility of neat hydrogels, at least at low content.