Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Cell, 4(135), p. 649-661, 2008

DOI: 10.1016/j.cell.2008.09.056

Links

Tools

Export citation

Search in Google Scholar

H2AZ Is Enriched at Polycomb Complex Target Genes in ES Cells and Is Necessary for Lineage Commitment

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Elucidating how chromatin organization influences gene expression patterns and ultimately cell fate is fundamental to understanding development and disease. Here, we investigate the role of the histone variant H2AZ in embryonic stem (ES) cells because it plays an essential, but poorly understood function during development. Genome-wide analysis reveals that H2AZ is enriched at a large class of developmentally important genes whose promoters harbor bivalent histone modifications in a manner that is remarkably similar to the Polycomb group (PcG) protein Suz12. By using RNAi, we demonstrate a role for H2AZ in regulating target gene expression, find that H2AZ and PcG protein occupancy is interdependent at promoters, and further show that H2AZ is necessary for ES cell differentiation. Notably, H2AZ occupies a different subset of genes in lineage-committed cells suggesting that its dynamic redistribution is necessary for cell fate transitions. These results indicate that H2AZ, together with PcG proteins, may establish chromatin states necessary for the proper execution of developmental gene expression programs.