Published in

American Physical Society, Physical Review C, 2(93)

DOI: 10.1103/physrevc.93.024316

Links

Tools

Export citation

Search in Google Scholar

Second0+state of unboundO12: Scaling of mirror asymmetry

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Expérience GANIL/LISE ; International audience ; The unbound O12 nucleus was studied via the two-neutron transfer (p,t) reaction in inverse kinematics using a radioactive O14 beam at 51 MeV/u. Excitation energy spectra and differential cross sections were deduced by the missing mass method using MUST2 telescopes. We achieved much higher statistics compared to the previous experiments of O12, which allowed accurate determination of resonance energy and unambiguous spin and parity assignment. The O12 resonance previously reported using the same reaction was confirmed at an excitation energy of 1.62±0.03(stat.)±0.10(syst.). MeV and assigned spin and parity of 0+ from a distorted-wave Born approximation analysis of the differential cross sections. Mirror symmetry of O12 with respect to its neutron-rich partner Be12 is discussed from the energy difference of the second 0+ states. In addition, from systematics of known 0+ states, a distinct correlation is revealed between the mirror energy difference and the binding energy after carrying out a scaling with the mass and the charge. We show that the mirror energy difference of the observed 0+ state of O12 is highly deviated from the systematic trend of deeply bound nuclei and in line with the scaling relation found for weakly bound nuclei with a substantial 2s1/2 component. The importance of the scaling of mirror asymmetry is discussed in the context of ab initio calculations near the drip lines and universality of few-body quantum systems.