Published in

BMJ Publishing Group, Thorax, 1(72), p. 74-82, 2016

DOI: 10.1136/thoraxjnl-2015-207236

Links

Tools

Export citation

Search in Google Scholar

Latrophilin receptors: novel bronchodilator targets in asthma

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Background Asthma affects 300 million people worldwide. In asthma, the major cause of morbidity and mortality is acute airway narrowing, due to airway smooth muscle (ASM) hypercontraction, associated with airway remodelling. However, little is known about the transcriptional differences between healthy and asthmatic ASM cells. Objectives To investigate the transcriptional differences between asthmatic and healthy airway smooth muscle cells (ASMC) in culture and investigate the identified targets using in vitro and ex vivo techniques. Methods Human asthmatic and healthy ASMC grown in culture were run on Affymetrix_Hugene_1.0_ST microarrays. Identified candidates were confirmed by PCR, and immunohistochemistry. Functional analysis was conducted using in vitro ASMC proliferation, attachment and contraction assays and ex vivo contraction of mouse airways. Results We suggest a novel role for latrophilin (LPHN) receptors, finding increased expression on ASMC from asthmatics, compared with non-asthmatics in vivo and in vitro, suggesting a role in mediating airway function. A single nucleotide polymorphism in LPHN1 was associated with asthma and with increased LPHN1 expression in lung tissue. When activated, LPHNs regulated ASMC adhesion and proliferation in vitro, and promoted contraction of mouse airways and ASMC. Conclusions Given the need for novel inhibitors of airway remodelling and bronchodilators in asthma, the LPHN family may represent promising novel targets for future dual therapeutic intervention.