Published in

American Geophysical Union, Geophysical Research Letters, 2(44), p. 648-656

DOI: 10.1002/2016gl071635

Links

Tools

Export citation

Search in Google Scholar

Schumann resonances at Mars: effects of the day-night asymmetry and the dust-loaded ionosphere

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Schumann resonances are standing waves that oscillate in the electromagnetic cavity formed between the conducting lower ionosphere and the surface of the planet. They have been measured in-situ only on Earth and Titan, although they are believed to exist on other planets like Mars. We report numerical simulations of the Martian electromagnetic cavity, accounting for the day - night asymmetry and different dust scenarios. It has been found that the resonances are more energetic on the nightside, the first resonance is expected to be 9 - 14 Hz depending on the dust activity, and to have low quality factors (Q≃2). This work serves as an input for the upcoming Exomars surface platform (launch 2020), who will attempt to measure them for the first time.