Published in

American Chemical Society, Journal of Physical Chemistry B (Soft Condensed Matter and Biophysical Chemistry), 36(120), p. 9661-9671, 2016

DOI: 10.1021/acs.jpcb.6b07206

Links

Tools

Export citation

Search in Google Scholar

Theoretical Assessment of Fluorinated Phospholipids in the Design of Liposomal Drug-Delivery Systems

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Fluorinated phospholipid analogues are investigated as potential substrates for phospholipase A(2) (PLA(2)) using classical molecular dynamics simulations and quantum mechanics/density functional theory calculations. The fluorinated phospholipid analogues are a-fluoro (HF-ProAEL) and alpha,alpha-difluoro (F-2-ProAEL) conjugates of (R)-1-O-hexadecyl-2-palmitoyl-sn-glycero-3-phoshocholineglycerol (ProAEL). Our results provide a theoretical assessment of the potential usefulness of these fluorinated lipids in the rational design of liposomal drug-delivery systems. The a-fluorine-substituted phospholipid analogues are found to be substrates for secretory PLA(2), with sufficient accessibility of water to the active site to allow for enzymatic hydrolysis. Because of the inherently less stable nature of HF-ProAEL and F-2-ProAEL when compared to that of ProAEL, the hydrolytic reaction is predicted to occur at a progressively faster rate; the more electronegative substituent at the a-position effectively lowers the energy barrier for hydrolysis. We conclude that the partially fluorinated phospholipid analogues facilitate rational design of liposomal vesicles of phospholipid mixtures with desirable physicochemical properties and that are still subjects for important and pharmaceutically proven drug-delivery mechanisms.