Published in

Elsevier, Applied Thermal Engineering, (114), p. 415-427

DOI: 10.1016/j.applthermaleng.2016.11.199

Links

Tools

Export citation

Search in Google Scholar

Experimental study on heat transfer augmentation of graphene based ferrofluids in presence of magnetic field

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The effect of a permanent magnetic field on the heat transfer characteristics of hybrid graphene-magnetite nanofluids (hybrid nanofluid) under forced laminar flow was experimentally investigated. For this purpose, a reduced graphene oxide-Fe3O4 was synthesized by using two-dimensional (2D) graphene oxide, iron salts and tannic acid as the reductant and stabilizer. Graphene sheets acted as the supporting materials to enhance the stability and thermal properties of magnetite nanoparticles. The thermo-physical and magnetic properties of this hybrid nanofluid have been widely characterized and it shows that the thermal conductivity increased up to 11%. The hybrid nanofluid behaves as a Newtonian fluid with liquid like behavior with superparamagnetic properties as was evident from its magnetic saturation value at 45.9 emu/g. Moreover, the experimental heat-transfer results indicated that the heat transfer enhancement of the hybrid nanofluid compared to the control fluid (distilled water) was negligible when no magnetic field was applied. Additionally, the convective heat transfer was significantly improved under the influence of a magnetic field with a maximum enhancement of 82% in terms of the convective heat transfer properties of the hybrid nanofluid.