Published in

MDPI, Water, 12(8), p. 604

DOI: 10.3390/w8120604

Links

Tools

Export citation

Search in Google Scholar

Riverbed Clogging and Sustainability of Riverbank Filtration

Journal article published in 2016 by Thomas Grischek ORCID, Rico Bartak
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Clogging refers to a reduction of riverbed hydraulic conductivity. Due to difficulties in determining the thickness of the clogging layer, the leakage coefficient (L) is introduced and used to quantify the recoverable portion of bank filtrate. L was determined at several riverbank filtration (RBF) sites in field tests and using an analytical solution. Results were compared with data from similar experiments in the early 1970s and 1991–1993. In the 1980s, severe river water pollution in conjunction with high water abstraction led to partly unsaturated conditions beneath the riverbed. A leakage coefficient L of 5 × 10−7 s−1 was determined. After water quality improvement, L increased to 1–1.5 × 10−6 s−1. An alternative, cost and time efficient method is presented to estimate accurate leakage coefficients. The analytical solution is based on groundwater level monitoring data from observation wells next to the river, which can later feed into numerical models. The analytical approach was able to reflect long-term changes as well as seasonal variations. Recommendations for its application are given based on experience.