Published in

Elsevier, Icarus, (292), p. 102-110

DOI: 10.1016/j.icarus.2016.12.027

Links

Tools

Export citation

Search in Google Scholar

Dawn-dusk difference of periodic oxygen EUV dayglow variations at Venus observed by Hisaki

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We report a dawn-dusk difference of periodic variations of oxygen EUV dayglow (OII 83.4 nm, OI 130.4 nm and OI 135.6 nm) in the upper atmosphere of Venus observed by the Hisaki spacecraft in 2015. Observations show that the periodic dayglow variations are mainly controlled by the solar EUV flux. Additionally, we observed characteristic ∼1 day and ∼4 day periodicities in the OI 135.6 nm brightness. The ∼1 day periodicity was dominant on the duskside while the ∼4 day periodicity was dominant on the dawnside. Although the driver of the ∼1 day periodicity is still uncertain, we suggest that the ∼4 day periodicity is caused by gravity waves that propagate from the middle atmosphere. The thermospheric subsolar-antisolar flow and the gravity waves dominantly enhance eddy diffusion on the dawnside, and the eddy diffusion coefficient changes every ∼4 days due to large periodic modulations of wind velocity of the super-rotating atmosphere. Since the ∼4 day modulations on the dawnside are not continuously observed, it is possible that there is an intermittent coupling between the thermosphere and middle atmosphere due to variations of wave source altitudes. Moreover, if there are variations of the wind velocity in the mesosphere or lower thermosphere, it is possible that gravity waves occasionally propagate to the thermosphere even on the duskside due to periodic disappearance of the critical level and the ∼4 day periodic O atomic modulations occur. Thus, our observations imply that the ∼4 day periodicity of the EUV dayglow may reflect the dynamics of the middle atmosphere of Venus. We also examined the effects of the solar wind on the dayglow variations by shifting the solar wind measurements from earth to Venus. We did not find clear correlations between them. However, since there are no local measurements of the solar wind at Venus, the effect of the solar wind on the dayglow is still uncertain.