Published in

MDPI, Applied Sciences, 12(6), p. 417, 2016

DOI: 10.3390/app6120417

Links

Tools

Export citation

Search in Google Scholar

Stabilization of Iron (Micro)Particles with Polyhydroxybutyrate for In Situ Remediation Applications

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Groundwater is an extremely important resource that may, however, contain a variety of toxic and bioaccumulative contaminants. Traditional “Pump and Treat” technologies for treating contaminated groundwater are no longer time- or cost-effective; therefore, new technologies are needed. In this work, we synthesized core–shell materials of micrometric dimensions based on the interaction of iron particles (the core) and fermentable biopolymers such as polyhydroxybutyrate (PHB, the surrounding shell) to be used in permeable reactive barriers for the removal of chlorinated pollutants from contaminated groundwater. The materials were prepared by precipitation techniques that allowed stable preparations to be obtained, whose chemico-physical properties were thoroughly characterized by scanning electron microscopy, porosimetry, Fourier transform infrared spectroscopy (FTIR), thermogravimetric analyses, disc centrifuge analysis, and dynamic light scattering. The properties of the prepared materials are very promising, and may enhance the performance of permeable reactive barriers towards chlorinated compounds.