Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Catalysts, 12(6), p. 210, 2016

DOI: 10.3390/catal6120210

Links

Tools

Export citation

Search in Google Scholar

Catalysis-Based Cataluminescent and Conductometric Gas Sensors: Sensing Nanomaterials, Mechanism, Applications and Perspectives

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Gas environment detection has become more urgent and significant, for both industrial manufacturing and environment monitoring. Gas sensors based on a catalytically-sensing mechanism are one of the most important types of devices for gas detection, and have been of great interest during the past decades. However, even though many efforts have contributed to this area, some great challenges still remain, such as the development of sensitively and selectively sensing catalysts. In this review, two representative catalysis-based gas sensors, cataluminescent and conductometric sensors, the basis of optical and electric signal acquisition, respectively, are summarized comprehensively. The current challenges have been presented. Recent research progress on the working mechanism, sensing nanomaterials, and applications reported by our group and some other researchers have been discussed systematically. The future trends and prospects of the catalysis-based gas sensors have also been presented.