Published in

Springer Nature [academic journals on nature.com], Leukemia, 4(31), p. 934-944, 2016

DOI: 10.1038/leu.2016.280

Links

Tools

Export citation

Search in Google Scholar

A novel signalling screen demonstrates that CALR mutations activate essential MAPK signalling and facilitate megakaryocyte differentiation

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Other ; This is the final version of the article. It first appeared from Nature Publishing Group via https://doi.org/10.1038/leu.2016.280 ; Abstract ; Most myeloproliferative neoplasm (MPN) patients lacking JAK2 mutations harbour somatic CALR mutations that are thought to activate cytokine signalling although the mechanism is unclear. To identify kinases important for survival of CALR-mutant cells, we developed a novel strategy (KISMET) that utilizes the full range of kinase selectivity data available from each inhibitor and thus takes advantage of off-target noise that limits conventional small-interfering RNA or inhibitor screens. KISMET successfully identified known essential kinases in haematopoietic and non-haematopoietic cell lines and identified the mitogen activated protein kinase (MAPK) pathway as required for growth of the CALR-mutated MARIMO cells. Expression of mutant CALR in murine or human haematopoietic cell lines was accompanied by myeloproliferative leukemia protein (MPL)-dependent activation of MAPK signalling, and MPN patients with CALR mutations showed increased MAPK activity in CD34 cells, platelets and megakaryocytes. Although CALR mutations resulted in protein instability and proteosomal degradation, mutant CALR was able to enhance megakaryopoiesis and pro-platelet production from human CD34+ progenitors. These data link aberrant MAPK activation to the MPN phenotype and identify it as a potential therapeutic target in CALR-mutant positive MPNs. ; Other ; Work in the Green lab is supported by Leukemia and Lymphoma Research, Cancer Research UK, the NIHR Cambridge Biomedical Research Centre, the Cambridge Experimental Cancer Medicine Centre and the Leukemia & Lymphoma Society of America. WW is supported by the Austrian Science Foundation (J 3578-B21). CGA is supported by Kay Kendall Leukaemia Fund clinical research fellowship. UM is supported by a Cancer Research UK Clinician Scientist Fellowship. Work in the Huntly lab is supported by the European Research Council, the MRC (UK), Bloodwise, the Cambridge NIHR funded BRC, KKLF and a WT/MRC Stem Cell centre grant. Work in the Green and Huntly Labs is supported by core support grants by the Wellcome Trust to the Cambridge Institute for Medical Research (100140/z/12/z) and Wellcome Trust-MRC Cambridge Stem Cell Institute (097922/Z/11/Z).