Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Current Opinion in Plant Biology, (35), p. 23-29

DOI: 10.1016/j.pbi.2016.10.007

Links

Tools

Export citation

Search in Google Scholar

Differentiation of conductive cells: a matter of life and death

Journal article published in 2017 by Jung-Ok Heo, Bernhard Blob ORCID, Ykä Helariutta
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Two major conducting tissues in plants, phloem and xylem, are composed of highly specialized cell types adapted to long distance transport. Sieve elements (SEs) in the phloem display a thick cell wall, callose-rich sieve plates and low cytoplasmic density. SE differentiation is driven by selective autolysis combined with enucleation, after which the plasma membrane and some organelles are retained. By contrast, differentiation of xylem tracheary elements (TEs) involves complete clearance of the cellular components by programmed cell death followed by autolysis of the protoplast; this is accompanied by extensive deposition of lignin and cellulose in the cell wall. Emerging molecular data on TE and SE differentiation indicate a central role for NAC and MYB type transcription factors in both processes. ; Other ; The Y.H. laboratory is funded by the Academy of Finland Centre of Excellence programme, the Gatsby Foundation, the Biotechnology and Biological Sciences Research Council, the University of Helsinki, the European Research Council Advanced Investigator Grant Symdev (No. 323052) and Tekes (the Finnish Funding Agency for Technology and Innovation).