Published in

Wiley, FEBS Letters, 9(587), p. 1440-1445, 2013

DOI: 10.1016/j.febslet.2013.03.027

Links

Tools

Export citation

Search in Google Scholar

Transient receptor potential vanilloid-2 mediates the effects of transient heat shock on endocytosis of human monocyte-derived dendritic cells

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Our goal was to investigate the effect of heat shock on human monocyte-derived dendritic cells (DCs) and to dissect the role of thermosensitive transient receptor potential (TRP) channels in the process. We provide evidence that a short heat shock challenge (43 degrees C) decreased the endocytotic activity of the DCs and that this effect could be alleviated by the RNAi-mediated knockdown of TRPV2 but, importantly, not by the pharmacological (antagonists) or molecular (RNAi) suppression of TRPV1 and TRPV4 activities/levels. Likewise, the heat shock-induced robust membrane currents were selectively and markedly inhibited by TRPV2 "silencing" whereas modulation of TRPV1 and TRPV4 activities, again, had no effect. These intriguing data introduce TRPV2-coupled signaling as a key player in mediating the cellular actions of heat shock on DCs.