Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Biophysical Journal, 8(111), p. 1773-1784, 2016

DOI: 10.1016/j.bpj.2016.09.007

Links

Tools

Export citation

Search in Google Scholar

The Mitotic spindle in the One-Cell C. elegans Embryo Is Positioned with High Precision and Stability

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Precise positioning of the mitotic spindle is important for specifying the plane of cell division, which in turn determines how the cytoplasmic contents of the mother cell are partitioned into the daughter cells, and how the daughters are positioned within the tissue. During metaphase in the early Caenorhabditis elegans embryo, the spindle is aligned and centered on the anterior-posterior axis by a microtubule-dependent machinery that exerts restoring forces when the spindle is displaced from the center. To investigate the accuracy and stability of centering, we tracked the position and orientation of the mitotic spindle during the first cell division with high temporal and spatial resolution. We found that the precision is remarkably high: the cell-to cell variation in the transverse position of the center of the spindle during metaphase, as measured by the standard deviation, was only 1.5% of the length of the short axis of the cell. Spindle position is also very stable: the standard deviation of the fluctuations in transverse spindle position during metaphase was only 0.5% of the short axis of the cell. Assuming that stability is limited by fluctuations in the number of independent motor elements such as microtubules or dyneins underlying the centering machinery, we infer that the number is similar to 1000, consistent with the several thousand of astral microtubules in these cells. Astral microtubules grow out from the two spindle poles, make contact with the cell cortex, and then shrink back shortly thereafter. The high stability of centering can be accounted for quantitatively if, while making contact with the cortex, the astral microtubules buckle as they exert compressive, pushing forces. We thus propose that the large number of microtubules in the asters provides a highly precise mechanism for positioning the spindle during metaphase while assembly is completed before the onset of anaphase.