Published in

Newlands Press, Future Medicinal Chemistry, 14(8), p. 1721-1737, 2016

DOI: 10.4155/fmc-2016-0088

Links

Tools

Export citation

Search in Google Scholar

Computational approaches in the rational design of improved carbonyl quenchers : focus on histidine containing dipeptides

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Aim: The inhibition of protein carbonylation can play therapeutic roles in several oxidative-based diseases and direct carbonyl quenching appears the most effective inhibition strategies. l-carnosine derivatives are effective and selective quenchers toward 4-hydroxy-2-nonenal even though their activity was never investigated in a fully comparable way. Results: The reported results revealed that anserine, homocarnosine and carnosinamide retain a remarkable quenching activity combined with a satisfactory selectivity. In silico analyses confirmed the key role of flexibility, lipophilicity and nucleophilicity parameters in rationalizing the measured reactivity. Conclusion: This study confirms that in silico approaches can be successfully used in the rational design of improved carbonyl quenchers. Physicochemical and stereoelectronic descriptors appear really informative especially when explored by their corresponding property spaces.