Dissemin is shutting down on January 1st, 2025

Published in

2016 IEEE Congress on Evolutionary Computation (CEC)

DOI: 10.1109/cec.2016.7743986

Links

Tools

Export citation

Search in Google Scholar

A surrogate model assisted evolutionary algorithm for computationally expensive design optimization problems with discrete variables

Proceedings article published in 2016 by Bo Liu, Nan Sun, Qingfu Zhang ORCID, Vic Grout, Georges Gielen
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Real-world computationally expensive design optimization problems with discrete variables pose challenges to surrogate-based optimization methods in terms of both efficiency and search ability. In this paper, a new method is introduced, called surrogate model-aware differential evolution with neighbourhood exploration, which has two phases. The first phase adopts a surrogate-based optimization method based on efficient surrogate model-aware search framework, the goal of which is to reach at least the neighbourhood of the global optimum. In the second phase, a neighbourhood exploration method for discrete variables is developed and collaborates with the first phase to further improve the obtained solutions. Empirical studies on various benchmark problems and a real-world network-on-chip design optimization problem show the combined advantages in terms of efficiency and search ability: when only a very limited number of exact evaluations are allowed, the proposed method is not slower than one of the most efficient methods for the targeted problem; when more evaluations are allowed, the proposed method can obtain results with comparable quality compared to standard differential evolution, but it requires only 1% to 30% of exact function evaluations.