Published in

Oxford University Press, Monthly Notices of the Royal Astronomical Society, 3(461), p. 3172-3193, 2016

DOI: 10.1093/mnras/stw1455

Links

Tools

Export citation

Search in Google Scholar

Detection of the kinematic Sunyaev–Zel'dovich effect with DES Year 1 and SPT

Journal article published in 2016 by B. Soergel ORCID, S. Flender, Kt T. Story, Lindsey Bleem ORCID, T. Giannantonio, G. Efstathiou, E. Rykoff, B. A. Benson, T. Crawford, S. Dodelson, S. Habib, K. Heitmann, G. Holder, B. Jain, E. Rozo and other authors.
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We detect the kinematic Sunyaev-Zel'dovich (kSZ) effect with a statistical significance of 4.2 sigma by combining a cluster catalogue derived from the first year data of the Dark Energy Survey with cosmic microwave background temperature maps from the South Pole Telescope Sunyaev-Zel'dovich Survey. This measurement is performed with a differential statistic that isolates the pairwise kSZ signal, providing the first detection of the large-scale, pairwise motion of clusters using redshifts derived from photometric data. By fitting the pairwise kSZ signal to a theoretical template, we measure the average central optical depth of the cluster sample, (tau) over bar (e) = (3.75 +/- 0.89) x 10(-3). We compare the extracted signal to realistic simulations and find good agreement with respect to the signal to noise, the constraint on (tau) over bar (e), and the corresponding gas fraction. High-precision measurements of the pairwise kSZ signal with future data will be able to place constraints on the baryonic physics of galaxy clusters, and could be used to probe gravity on scales greater than or similar to 100 Mpc.