Published in

Wiley, British Journal of Pharmacology, 7(149), p. 909-919, 2006

DOI: 10.1038/sj.bjp.0706917

Links

Tools

Export citation

Search in Google Scholar

Effects of chronic treatment with statins and fenofibrate on rat skeletal muscle: a biochemical, histological and electrophysiological study

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Background and purpose: Skeletal muscle injury by hypolipidemic drugs is not fully understood. An extensive analysis of the effect of chronic treatment with fluvastatin (5 mgkg(-1) and 20 mgkg(-1)), atorvastatin (10 mgkg(-1)) and fenofibrate (60 mgkg(-1)) on rat skeletal muscle was undertaken. Experimental approach: Myoglobinemia as sign of muscle damage was measured by enzymatic assay. Histological and immunohistochemical techniques were used to estimate muscle integrity and the presence of aquaporin-4, a protein controlling water homeostasis. Electrophysiological evaluation of muscle Cl(-) conductance (gCl) and mechanical threshold (MT) for contraction, index of intracellular calcium homeostasis, was performed by the two-intracellular microelectrodes technique. Key results: Fluvastatin (20 mgkg(-1)) increased myoglobinemia. The lower dose of fluvastatin did not modify myoglobinemia, but reduced urinary electrolytes, suggesting direct effects on renal function. Atorvastatin also increased myoglobinemia, with slight effects on urinary parameters. No treatment caused any histological damage to muscle or modification in the number of fibres expressing aquaporin-4. Either fluvastatin (at both doses) or atorvastatin reduced sarcolemma gCl and changed MT. Both statins produced slight effects on total cholesterol, suggesting that the observed modifications occur independently of HMGCoA-reductase inhibition. Fenofibrate increased myoglobinemia and decreased muscle gCl, whereas it did not change the MT, suggesting a different mechanism of action from the statins. Conclusions and Implications: This study identifies muscle gCl and MT as early targets of drugs action that may contribute to milder symptoms of myotoxicity, such as muscle cramps, while the increase of myoglobinemia is a later phenomenon.